S not simply continuous, but in addition goes to , as ( T, E1 , E2 ) tends for the boundary of R3 and ( T, E1 , E2 ) . V must have a Seclidemstat Biological Activity minimum point ( T (0), E1 (0), E2 (0)) AS-0141 custom synthesis within the interior of R3 . Define a C2 -function V : R3 R as V ( T, E1 , E2 ) = V ( T, E1 , E2 ) – V ( T (0), E1 (0), E2 (0)).- 1 Let V1 = -lnT – lnE1 – lnE2 , V2 = T – E1 , V3 = 1 ( T E1 E2 )1 , 0, two two two d = maxd1 , d2 and constant 1 satisfies d – (1 two three ) 0, as well as the following:M1 =sup( T,E1 ,E2 ) R3 1 two 2 2 (( a d) T ( E1 E2 ) T two )( T E1 E2 ) – [d – (1 two 3 )] 2( T 1 E1 1 E2 1 ) ,M2 =sup( T,E1 ,E2 ) R3 – E1 (d1 1 2 two 2 T – r1 E1 M1 – [d – (1 2 three )]( T 1 E1 1 E2 1 ) four( 1) 2 2 ) r1 E1 r2 E2 H .Applying Ito’s formula L around the functions V1 , V2 and V3 give the following: LV1 r1 E1 r2 E2 d1 d2 LV2 2 two 1 2 three ,(8)-T – ( a – r1 E1 – r2 E2 ) -T – ( a -( 1) two – 1 T- – E1 (-d1 T2 two – ) (two 1) 2 E1 , T two k1 ( 1) two 2 two ),(9)( 1) two – two two 1 ) – E1 T- T – (r1 E1 r2 E2 ) E1 (d1 Mathematics 2021, 9,6 ofLV( T E1 E2 ) ( a d) T ( E1 E2 ) T 2 – d( T E1 E2 ) ( T E1 E2 )-12 two two 2 two 1 T 2 two E1 3 E2 ],( T E1 E2 ) ( a d) T ( E1 E2 ) T two – d( T E1 E2 ) ( T E1 E2 )12 two two 1 two 3 ), two two 2 ( a d) T ( E1 E2 ) T two ( T E1 E2 ) – ( T E1 E2 )1 [d – (1 2 3 )], 2 2 two two M1 – 1 [d – (1 2 3 )]( T 1 E1 1 E2 1 ). 2(ten)From Equations (8)ten), we have the following: LV-T – ( a -( 1) two – two 2 1 ) – E1 T2 2 2 1 two 3- T – (r1 E1 r2 E2 ) E1 (d1 ( 1) two two two ) r1 Er2 E2 d1 d2 -T – ( a -1 two two 2 M1 – two [d – (1 2 three )]( T 1 E1 1 E2 1 ), 2 1 two two two T – r2 E2 – four [d – (1 2 three )]( T 1( 1) 2 – 2 two 1 ) – E1 T2 two 2 E1 1 E2 1 ) T – r1 E1 M1 – 1 [d – (1 two three )]( T 1 E1 1 E2 1 ) 4- E1 (d1 ( 1) 2 2 two ) r1 E r2 E2 H.Define a bounded closed set as follows: D = ( T, E1 , E2 ) R3 : Inside the set R3 \ D, let us decide on 1 T ,E,E. 0 satisfies the following:(11) (12) (13) (14) (15) (16)- -(a -( 1) 2 1 ) M2 -1, M2 -1, 01 , r2 1 1 two 2 two – [d – (1 two 3 )] 1 M2 -1, four two two 1 1 2 two – [d – (1 two three )] 2(1) M2 -1, 4 2 1 two 1 2 2 – [d – (1 2 three )] two(1) M2 -1, 4where M2 = sup(T,E1 ,E2 )R- E2 1 ) E1 (d1 two 2 2 T – r1 E1 M1 – 1 [d – (1 two three )]( T 1 E1 1 four( 1) 2 two two ) r1 E r2 E2 H and H = d1 d2 2 two two 1 2 three .Mathematics 2021, 9,7 ofLet us prove condition (ii) of Lemma 2 to show that LV -1 for ( T, E1 , E2 ) R3 \ D 3 \ D = 6 D , exactly where the following holds: and R i =1 i D1 = ( T, E1 , E2 ) R3 ; 0 T , D2 = ( T, E1 , E2 ) R3 ; 0 E1 2, T , , E E2 1 D4 = ( T, E1 , E2 ) R3 ; T , D5 = ( T, E1 , E2 ) R3 ; E1 D6 = ( T, E1 , E2 ) R3 ; E2 D3 = ( T, E1 , E2 )R3 ; 0 , T ,, .Case (i) For ( T, E1 , E2 ) D1 , we get the following: LV-T – ( a -( 1) 2 – 2 1 ) T r1 E1 ( 1) 2 2 2 ) r1 E1 two two 2 M1 – four [d – (1 2 3 )]( T 1 E1 1 E2 1 )- E1 (d1 r2 E2 H,-T – ( a – – ( a -( 1) two 2 1 ) M2 ,( 1) 2 two 1 ) M2 -1,which can be obtained from (11). Case (ii). For ( T, E1 , E2 ) D2 , we have the following:- LV -E1 T two M2 ,- M2 -1,which can be obtained from (12). Case (iii). For ( T, E1 , E2 ) D3 , we have the following:- LV -E1 T two r2 E2 M2 ,- r M2 -1,that is obtained from (13) and – 2 M2 -2. Case (iv). For ( T, E1 , E2 ) D4 , we’ve got the following: 1 LV – [ d – 4 1 – [d – four two 2 two ( 2 3 )] T 1 M2 , 2 1 2 1 two 2 ( two three )] (1) M2 -1, 2which is obtained from (14). Case (v). For ( T, E1 , E2 ) D5 , we acquire the following: 1 LV – [ d – four 1 – [d – four which is ob.